

NORTH COUNTY HIGH SCHOOL SUMMER REVIEW PACKET

For students in entering **CALCULUS** (AB and /or BC)

Name:	
_	
	_
1.	This packet is to be handed in to your Calculus teacher the first week of the school year.
2.	All work must be shown on separate paper attached to the packet.
3.	Completion of this packet will be counted in your first marking period grade.

Summer Review Packet for Students Entering Calculus (all levels)

Complex Fractions

When simplifying complex fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Example:

$$\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} \cdot \frac{x+1}{x+1} = \frac{-7x - 7 - 6}{5} = \frac{-7x - 13}{5}$$

$$\frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} \cdot \frac{x(x-4)}{x(x-4)} = \frac{-2(x-4) + 3x(x)}{5(x)(x-4) - 1(x)} = \frac{-2x + 8 + 3x^2}{5x^2 - 20x - x} = \frac{3x^2 - 2x + 8}{5x^2 - 21x}$$

Simplify each of the following.

$$1. \quad \frac{\frac{25}{a} - a}{5 + a}$$

$$2. \frac{2 - \frac{4}{x+2}}{5 + \frac{10}{x+2}}$$

$$3. \ \frac{4 - \frac{12}{2x - 3}}{5 + \frac{15}{2x - 3}}$$

Functions

To evaluate a function for a given value, simply plug the value into the function for x.

Recall: $(f \circ g)(x) = f(g(x)) OR f[g(x)]$ read "f of g of x" Means to plug the inside function (in this case g(x)) in for x in the outside function (in this case, f(x)).

Example: Given $f(x) = 2x^2 + 1$ and g(x) = x - 4 find f(g(x)).

$$f(g(x)) = f(x-4)$$

$$= 2(x-4)^{2} + 1$$

$$= 2(x^{2} - 8x + 16) + 1$$

$$= 2x^{2} - 16x + 32 + 1$$

$$f(g(x)) = 2x^{2} - 16x + 33$$

Let f(x) = 2x + 1 and $g(x) = 2x^2 - 1$. Find each.

6.
$$f(2) =$$
 8. $f(t+1) =$

8.
$$f(t+1) =$$

9.
$$f[g(-2)] =$$

10.
$$g[f(m+2)] =$$

9.
$$f[g(-2)] = 11$$
. $\frac{f(x+h) - f(x)}{h} = 11$

Let $f(x) = \sin x$ Find each exactly.

12.
$$f\left(\frac{\pi}{2}\right) =$$

13.
$$f\left(\frac{2\pi}{3}\right) =$$

Let $f(x) = x^2$, g(x) = 2x + 5, and $h(x) = x^2 - 1$. Find each.

14.
$$h[f(-2)] =$$

14.
$$h[f(-2)] =$$
 15. $f[g(x-1)] =$ 16. $g[h(x^3)] =$

3

16.
$$g[h(x^3)] =$$

Find $\frac{f(x+h)-f(x)}{h}$ for the given function f.

17.
$$f(x) = 9x + 3$$

18.
$$f(x) = 5 - 2x$$

Intercepts and Points of Intersection

To find the x-intercepts, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve.

Example: $y = x^2 - 2x - 3$

$$x - \text{int.} (Let \ y = 0)$$

$$0 = x^2 - 2x - 3$$

$$0 = (x-3)(x+1)$$

 $x = -1 \text{ or } x = 3$

$$x = -1 \text{ or } x = 3$$

$$x-i$$
 ntercepts $(-1,0)$ and $(3,0)$

$$y - \operatorname{int}. (Let \ x = 0)$$

$$y = 0^2 - 2(0) - 3$$

$$y = -3$$

$$y - intercept (0, -3)$$

Find the x and y intercepts for each.

19.
$$y = 2x - 5$$

20.
$$y = x^2 + x - 2$$

21.
$$y = x\sqrt{16 - x^2}$$

22.
$$y^2 = x^3 - 4x$$

Use substitution or elimination method to solve the system of equations.

$$x^2 + y - 16x + 39 = 0$$

$$x^2 - y^2 - 9 = 0$$

Elimination Method

$$2x^2 - 16x + 30 = 0$$

$$x^2 - 8x + 15 = 0$$

$$(x-3)(x-5)=0$$

$$x = 3$$
 and $x = 5$

Plug x=3 and x=5 into one original

$$3^2 - y^2 - 9 = 0 5^2 - y^2 - 9 = 0$$

$$5^2 - y^2 - 9 = 0$$

$$-y^2=0$$

$$16 = y^2$$

$$y = 0$$

$$y = \pm 4$$

Points of Intersection (5,4), (5,-4) and (3,0)

Substitution Method

 $y^2 = -x^2 + 16x - 39$ (1st equation solved for y) $x^2 - (-x^2 + 16x - 39) - 9 = 0$ Plug what y^2 is equal to into second equation. $2x^2 - 16x + 30 = 0$ (The rest is the same as $x^2 - 8x + 15 = 0$ previous example) (x - 3)(x - 5) = 0 x = 3 or x - 5

$$y^2 = -x^2 + 16x - 39$$

$$x^2 - (-x^2 + 16x - 39) - 9 = 0$$

$$x^2 - 8x + 15 = 0$$

$$(x-3)(x-5)=0$$

$$x = 3 \text{ or } x - 5$$

Find the point(s) of intersection of the graphs for the given equations.

$$23. \qquad \begin{aligned} x+y &= 8 \\ 4x-y &= 7 \end{aligned}$$

$$x^2 + y = 6$$

Interval Notation

26. Complete the table with the appropriate notation or graph.

Solution	Interval Notation	Graph
$-2 < x \le 4$		
	[-1,7)	
	HILL I SID I SO I SO I SO I SO I SO I SO I S	8

Solve each equation. State your answer in BOTH interval notation and graphically.

27.
$$2x-1 \ge 0$$

28.
$$-4 \le 2x - 3 < 4$$

29.
$$\frac{x}{2} - \frac{x}{3} > 5$$

Domain and Range

Find the domain and range of each function. Write your answer in INTERVAL notation.

$$30. \ \ f(x) = x^2 - 5$$

30.
$$f(x) = x^2 - 5$$
 31. $f(x) = -\sqrt{x+3}$ 32. $f(x) = 3\sin x$

$$32. \quad f(x) = 3\sin x$$

33.
$$f(x) = \frac{2}{x-1}$$

<u>Inverses</u>

To find the inverse of a function, simply switch the x and the y and solve for the new "y" value.

Example:

$$f(x) = \sqrt[3]{x+1}$$
 Rewrite f(x) as y

$$y = \sqrt[3]{x+1}$$
 Switch x and y
 $x = \sqrt[3]{y+1}$ Solve for your s

$$x = \sqrt[3]{y+1}$$
 Solve for your new y

$$(x)^3 = (\sqrt[3]{y+1})^3$$
 Cube both sides

$$x^3 = y + 1$$
 Simplify

$$y = x^3 - 1$$
 Solve for y

$$f^{-1}(x) = x^3 - 1$$
 Rewrite in inverse notation

Find the inverse for each function.

34.
$$f(x) = 2x + 1$$

35.
$$f(x) = \frac{x^2}{3}$$

Also, recall that to PROVE one function is an inverse of another function, you need to show that: f(g(x)) = g(f(x)) = x

Example:

If: $f(x) = \frac{x-9}{4}$ and g(x) = 4x+9 show f(x) and g(x) are inverses of each other.

$$f(g(x)) = 4\left(\frac{x-9}{4}\right) + 9$$

$$= x - 9 + 9$$

$$= x$$

$$= x$$

$$g(f(x)) = \frac{(4x+9)-9}{4}$$

$$= \frac{4x+9-9}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

f(g(x)) = g(f(x)) = x therefore they are inverses of each other.

Prove f and g are inverses of each other.

36.
$$f(x) = \frac{x^3}{2}$$
 $g(x) = \sqrt[3]{2x}$

37.
$$f(x) = 9 - x^2, x \ge 0$$
 $g(x) = \sqrt{9 - x}$

Equation of a line

Slope intercept form: y = mx + b

Vertical line: x = c (slope is undefined)

Point-slope form: $y - y_1 = m(x - x_1)$

- **Horizontal line:** y = c (slope is 0)
- 38. Use slope-intercept form to find the equation of the line having a slope of 3 and a y-intercept of 5.
- 39. Determine the equation of a line passing through the point (5, -3) with an undefined slope.
- 40. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.
- 41. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3.
- 42. Find the equation of a line passing through the point (2, 8) and parallel to the line $y = \frac{5}{6}x 1$.

- 43. Find the equation of a line perpendicular to the y- axis passing through the point (4, 7).
- 44. Find the equation of a line passing through the points (-3, 6) and (1, 2).
- 45. Find the equation of a line with an x-intercept (2, 0) and a y-intercept (0, 3).

Radian and Degree Measure

Use $\frac{180^{\circ}}{\pi \, radians}$ to get rid of radians and convert to degrees.

Use $\frac{\pi \ radians}{180^{\circ}}$ to get rid of degrees and convert to radians.

- 46. Convert to degrees:
- a. $\frac{5\pi}{6}$
- b. $\frac{4\pi}{5}$

c. 2.63 radians

- 47. Convert to radians:
- a. 45°
- b. -17°

c. 237°

Angles in Standard Position

48. Sketch the angle in standard position.

a.
$$\frac{11\pi}{6}$$

b. 230°

c. $-\frac{5\pi}{3}$

d. 1.8 radians

Reference Triangles

- 49. Sketch the angle in standard position. Draw the reference triangle and label the sides, if possible.
- a. $\frac{2}{3}\pi$

b. 225°

c. $-\frac{\pi}{4}$

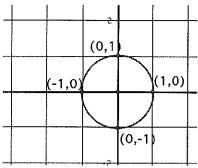
d. 30°

Unit Circle

You can determine the sine or cosine of a quadrantal angle by using the unit circle. The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle.

Example: $\sin 90^{\circ} = 1$

 $\cos\frac{\pi}{2} = 0$



50. a.) sin180°

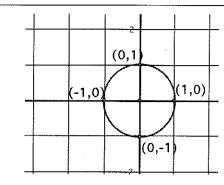
b.) cos 270°

c.) $\sin(-90^{\circ})$

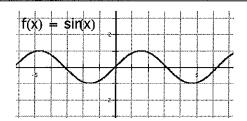
d.) $\sin \pi$

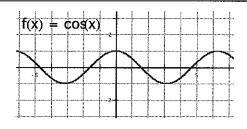
e.) cos 360°

f.) $\cos(-\pi)$



Graphing Trig Functions





 $y = \sin x$ and $y = \cos x$ have a period of 2π and an amplitude of 1. Use the parent graphs above to help you sketch a graph of the functions below. For $f(x) = A\sin(Bx + C) + K$, A = amplitude, $\frac{2\pi}{B} = \text{period}$,

 $\frac{C}{B}$ = phase shift (positive C/B shift left, negative C/B shift right) and K = vertical shift.

Graph two complete periods of the function.

51.
$$f(x) = 5\sin x$$

52.
$$f(x) = \sin 2x$$

$$53. \ f(x) = -\cos\left(x - \frac{\pi}{4}\right)$$

$$54. \ f(x) = \cos x - 3$$

Trigonometric Equations:

Solve each of the equations for $0 \le x < 2\pi$. Isolate the variable, sketch a reference triangle, find all the solutions within the given domain, $0 \le x < 2\pi$. Remember to double the domain when solving for a double angle. Use trig identities, if needed, to rewrite the trig functions. (See formula sheet at the end of the packet.)

11

55.
$$\sin x = -\frac{1}{2}$$

56.
$$2\cos x = \sqrt{3}$$

57.
$$\cos 2x = \frac{1}{\sqrt{2}}$$

58.
$$\sin^2 x = \frac{1}{2}$$

$$59. \sin 2x = -\frac{\sqrt{3}}{2}$$

60.
$$2\cos^2 x - 1 - \cos x = 0$$

61.
$$4\cos^2 x - 3 = 0$$

62.
$$\sin^2 x + \cos 2x - \cos x = 0$$

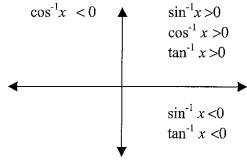
Inverse Trigonometric Functions:

Recall: Inverse Trig Functions can be written in one of ways:

$$\arcsin(x)$$

$$\sin^{-1}(x)$$

Inverse trig functions are defined only in the quadrants as indicated below due to their restricted domains.

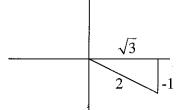


Example:

Express the value of "y" in radians.

$$y = \arctan \frac{-1}{\sqrt{3}}$$

Draw a reference triangle.



This means the reference angle is 30° or $\frac{\pi}{6}$. So, $y = -\frac{\pi}{6}$ so that it falls in the interval from

$$\frac{-\pi}{2} < y < \frac{\pi}{2}$$

$$\frac{-\pi}{2} < y < \frac{\pi}{2}$$
 Answer: $y = -\frac{\pi}{6}$

For each of the following, express the value for "y" in radians.

76.
$$y = \arcsin \frac{-\sqrt{3}}{2}$$

77.
$$y = \arccos(-1)$$

78.
$$y = \arctan(-1)$$

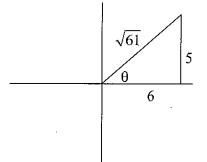
Example: Find the value without a calculator.

$$\cos\left(\arctan\frac{5}{6}\right)$$

Draw the reference triangle in the correct quadrant first.

Find the missing side using Pythagorean Thm.

Find the ratio of the cosine of the reference triangle.



$$\cos\theta = \frac{6}{\sqrt{61}}$$

For each of the following give the value without a calculator.

63.
$$\tan\left(\arccos\frac{2}{3}\right)$$

64.
$$\sec\left(\sin^{-1}\frac{12}{13}\right)$$

65.
$$\sin\left(\arctan\frac{12}{5}\right)$$

66.
$$\sin\left(\sin^{-1}\frac{7}{8}\right)$$

Formula Sheet

$$\csc x = \frac{1}{\sin x} \qquad \qquad \sec x = \frac{1}{\cos x} \qquad \qquad \cot x = \frac{1}{\tan x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\cot x = \frac{1}{\tan x}$$

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\sin^2 x + \cos^2 x = 1$$
 $\tan^2 x + 1 = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

$$\tan^2 x + 1 = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$= 1 - 2\sin^2 x$$
$$= 2\cos^2 x - 1$$

$$y = \log_a x$$

$$y = \log_a x$$
 is equivalent to $x = a^y$

$$y - a^y$$

$$\log_b mn = \log_b m + \log_b n$$

$$\log_b \frac{m}{n} = \log_b m - \log_b n$$

$$\log_b m^p = p \log_b m$$

If
$$\log_b m = \log_b n$$
, then $m = n$

$$\log_a n = \frac{\log_b n}{\log_b a}$$

Slope of a tangent line to a curve or the derivative:
$$\lim_{h\to\infty} \frac{f(x+h)-f(x)}{h}$$

$$\lim_{h\to\infty}\frac{f(x+h)-f(x)}{h}$$

Slope-intercept form:
$$y = mx + b$$

Point-slope form:
$$y - y_1 = m(x - x_1)$$

$$Ax + By + C = 0$$